Commit 584a8682 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 90e88c2e
Pipeline #13571 canceled with stage
......@@ -124,7 +124,7 @@ visible: false
<br>
**$`\overrightarrow{\Delta}=
\left(\begin{array}{l}
\dfrac{\partial^2 U_x}}{\partial x^2}+\dfrac{\partial^2 U_x}{\partial y^2}+\dfrac{\partial^2 U_x}}{\partial z^2}\\
\dfrac{\partial^2 U_x}}{\partial x^2}+\dfrac{\partial^2 U_x}{\partial y^2}+\dfrac{\partial^2 U_x}{\partial z^2}\\
\dfrac{\partial^2 U_y}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_y}{\partial z^2}\\
\dfrac{\partial^2 U_z}{\partial x^2}+\dfrac{\partial^2 U_z}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial z^2
\end{array}\right)`$**
......@@ -181,15 +181,21 @@ $`\quad = \left(
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; et nous obtenons l'expression **en coordonnées cartésiennes** :
**$`\overrightarrow{grad}\big(div\,\overrightarrow{U}\big)`$
$`\quad = \left(
$`\overrightarrow{grad}\big(div\,\overrightarrow{U}\big)`$
$`\quad =`$
**$` \left(
\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial x\, \partial y}+\dfrac{\partial^2 U_z}{\partial x \,\partial z}\\
\dfrac{\partial^2 U_x}{\partial y \,\partial x}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial y \,\partial z}\\
\dfrac{\partial^2 U_x}{\partial z \,\partial x}+\dfrac{\partial^2 U_y}{\partial z \,\partial y}+\dfrac{\partial^2 U_z}{\partial z^2}
\end{array}\right)`$**
---------------
<br>
----------------------------------
<br>
* Le **champ de rotationnel $`\overrightarrow{rot}\,\overrightarrow{U}`$** d'un champ vectoriel $`\overrightarrow{U}`$ au moins
deux fois dérivable, peut être caractérisé *en chacun de ses points* par :
......@@ -233,9 +239,9 @@ $`\quad =
&nbsp;&nbsp;&nbsp;&nbsp; Nous obtenons alors l'expression **en coordonnées cartésiennes** :
**$`\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{U}\big)`$
$`\quad =
\left(\begin{array}{l}
$`\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{U}\big)`$
$`\quad =`$
**$`\left(\begin{array}{l}
\dfrac{\partial^2 U_y}{\partial y\,\partial x}
-\dfrac{\partial^2 U_x}{\partial y^2}
-\dfrac{\partial^2 U_x}{\partial z^2}
......@@ -250,8 +256,12 @@ $`\quad =
+\dfrac{\partial^2 U_z}{\partial y\,\partial z} \\
\end{array}\right)`$**
<br>
----------------------------------
<br>
Un **fait important** apparaît par
*soustraction* des composantes cartésiennes *de $`\overrightarrow{grad}\big(div\,\overrightarrow{U}\big)`$*
*et de $`\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{U}\big)`$*
......@@ -329,10 +339,10 @@ $`\require{cancel}\quad = \left(\begin{array}{l}
* Au total nous obtenons l'expression simple **en coordonnées cartésiennes** :
**$`\overrightarrow{grad}\big(div\;\overrightarrow{U}\big)
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{U}\big)`$**
**$`\quad =
\left(\begin{array}{l}
$`\overrightarrow{grad}\big(div\;\overrightarrow{U}\big)
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{U}\big)`$
$`\quad =`$
**$`\left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_x}{\partial y^2}+\dfrac{\partial^2 U_x}{\partial z^2}\\
\dfrac{\partial^2 U_y}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_y}{\partial z^2}\\
\dfrac{\partial^2 U_z}{\partial x^2}+\dfrac{\partial^2 U_z}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial z^2}
......@@ -358,7 +368,8 @@ possède son champ $`\overrightarrow{grad}\big(div\;\overrightarrow{U}\big)
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{U}\big)`$ vérifie l'* **équation d'onde** :
<br>
*$`\large{\overrightarrow{grad}\big(div\;\overrightarrow{U}\big)
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{U}\big)}`$$`\;\;-\dfrac{1}{\mathscr{v}^2}\dfrac{\partial^2 \overrightarrow{U}}{\partial t^2}=0}`$*
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{U}\big)}`$
$`\;\;\large{-\dfrac{1}{\mathscr{v}^2}\dfrac{\partial^2 \overrightarrow{U}}{\partial t^2}=0}`$*
<br>
ou écrit avec le laplacien scalaire :
<br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment