Commit 6b2ed0d8 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent ff2b0b9b
Pipeline #16015 canceled with stage
...@@ -218,14 +218,14 @@ puis d'une onde plane progressive monochromatique (OPPM). ...@@ -218,14 +218,14 @@ puis d'une onde plane progressive monochromatique (OPPM).
\mu_0\,\overrightarrow{j}+\overbrace{\mu_0\epsilon_0}^{=\;\dfrac{1}{c^2}}\,\dfrac{\partial \overrightarrow{E}}{\partial t}}_{\color{blue}{\text{th. de Maxwell-Faraday}}} \mu_0\,\overrightarrow{j}+\overbrace{\mu_0\epsilon_0}^{=\;\dfrac{1}{c^2}}\,\dfrac{\partial \overrightarrow{E}}{\partial t}}_{\color{blue}{\text{th. de Maxwell-Faraday}}}
=\dfrac{1}{c^2}\,\dfrac{\partial \overrightarrow{E}}{\partial t}\\ =\dfrac{1}{c^2}\,\dfrac{\partial \overrightarrow{E}}{\partial t}\\
\\ \\
&\overrightarrow{B}\;uniforme\\ &\overrightarrow{B}\;uniforme\;
&dans\;tout\;plan\;\perp\overrightarrow{e_z}\end{align}\right\}`$ dans\;tout\;plan\;\perp\overrightarrow{e_z}\end{align}\right\}`$
<br> <br>
$`\Longrightarrow\left\{ $`\Longrightarrow\left\{
\begin{align} \begin{align}
&\dfrac{\partial B_z}{\partial y}-\dfrac{\partial B_y}{\partial z}=\dfrac{1}{c^2}\;\dfrac{\partial E_x}{\partial t}\\ &\dfrac{\partial B_z}{\partial y}-\dfrac{\partial B_y}{\partial z}=\dfrac{1}{c^2}\;\dfrac{\partial E_x}{\partial t}\\
&\dfrac{\partial B_x}{\partial z}-\dfrac{\partial B_z}{\partial x}=\dfrac{1}{c^2}\;\dfrac{\partial E_y}{\partial t}}\\ &\dfrac{\partial B_x}{\partial z}-\dfrac{\partial B_z}{\partial x}=\dfrac{1}{c^2}\;\dfrac{\partial E_y}{\partial t}\\
&\dfrac{\partial B_y}{\partial x}-\dfrac{\partial B_x}{\partial y}==\dfrac{1}{c^2}\;\dfrac{\partial E_z}{\partial t}\\ &\dfrac{\partial B_y}{\partial x}-\dfrac{\partial B_x}{\partial y}=\dfrac{1}{c^2}\;\dfrac{\partial E_z}{\partial t}\\
\\ \\
&\dfrac{\partial B_z}{\partial y}=\dfrac{\partial B_y}{\partial z}=\dfrac{\partial B_x}{\partial z}=\dfrac{\partial B_z}{\partial x}\\ &\dfrac{\partial B_z}{\partial y}=\dfrac{\partial B_y}{\partial z}=\dfrac{\partial B_x}{\partial z}=\dfrac{\partial B_z}{\partial x}\\
&\quad =\dfrac{\partial B_y}{\partial x}=\dfrac{\partial B_x}{\partial y}=0 &\quad =\dfrac{\partial B_y}{\partial x}=\dfrac{\partial B_x}{\partial y}=0
...@@ -233,11 +233,11 @@ puis d'une onde plane progressive monochromatique (OPPM). ...@@ -233,11 +233,11 @@ puis d'une onde plane progressive monochromatique (OPPM).
<br> <br>
*$`\Longrightarrow\left\{ *$`\Longrightarrow\left\{
\begin{align} \begin{align}
&-\dfrac{\partial B_z}{\partial x}=\dfrac{1}{c^2}\;\dfrac{\partial E_y}{\partial t}\\ &-\dfrac{\partial B_y}{\partial z}=\dfrac{1}{c^2}\;\dfrac{\partial E_x}{\partial t}\\
\\ \\
&\dfrac{\partial B_y}{\partial x}=\dfrac{1}{c^2}\;\dfrac{\partial E_z}{\partial t}\\ &\dfrac{\partial B_x}{\partial z}=\dfrac{1}{c^2}\;\dfrac{\partial E_y}{\partial t}\\
\\ \\
&\dfrac{\partial B_z}{\partial t}=0 &\dfrac{\partial E_z}{\partial t}=0
\end{align}\right.`$* \end{align}\right.`$*
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment