Commit 92a7a923 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 7394fadd
Pipeline #18233 canceled with stage
......@@ -784,13 +784,15 @@ figure à faire
\times
\int_{\rho=0}^{R} \rho\,(\rho^2+z_M^2)^{\,-3/2}\,d\rho`$
<br>
$`\displaystyle \hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \int_{\rho = 0}^R -\Big(\underbrace{(-\dfrac{1}{2}\Big)}_{n+1}\times
$`\displaystyle \hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \int_{\rho = 0}^R -\Big(\underbrace{-\dfrac{1}{2}\Big}_{n+1})\cdot
\underbrace{2\rho}_{u^{\,'}}\,\underbrace{(\rho^2+z^2)^{-\,3/2}}_{u^n}\,d\rho`$
<br>
$`\color{blue}{\scriptsize{\text{le signe moins devant } (n+1)\cdot u^n \cdot u' \text{ devient un plus en inversant les bornes d'intégration}}}`$
$`\displaystyle \hspace{1cm} = - \dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[(\rho^2+z^2)^{-\,1/2}\big]_0^R`$
<br>
$`\displaystyle \hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[\underbrace{\dfrac{1}{2}\times\dfrac{1}{-3/2+1}}
_{=\frac{1}{2}\,\times \,(-2) \,=\, -1}(\rho^2+z^2)^{-\,1/2}\big]_0^R`$
$`\color{blue}{\scriptsize{\text{le signe moins devant } (n+1)\cdot u^n \cdot u'}}`$
$`\color{blue}{\scriptsize{\text{ devient plus en inversant les bornes d'intégration}}}`$
<br>
$`\displaystyle \hspace{1cm} = +\dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[(\rho^2+z^2)^{-\,1/2}\big]_R^0`$
<br>
$`\displaystyle \hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \left(\dfrac{1}{|z|} - \dfrac{1}{\sqrt{\rho^2+z^2}}\right)`$
<br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment