Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
92f8343b
Commit
92f8343b
authored
Aug 15, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
4754f228
Pipeline
#12795
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
14 deletions
+15
-14
cheatsheet.fr.md
...-vacuum/10.maxwell-equations/20.overview/cheatsheet.fr.md
+15
-14
No files found.
12.temporary_ins/90.electromagnetism-in-vacuum/10.maxwell-equations/20.overview/cheatsheet.fr.md
View file @
92f8343b
...
...
@@ -157,16 +157,17 @@ $`\Longrightarrow`$
*
$
`\left.\begin{array}{l}
\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = \iint_S\Big(-\dfrac{\partial\overrightarrow{B}}{\partial t}\cdot\overrightarrow{dS}\Big) \\
\text{Newton : espace et temps indépendants}
\end{array}\right\}
\Longrightarrow`
$
\text{Newton : espace et temps indépendants \\
\Longrightarrow ordre dérivation/intégration n'importe pas}
\end{array}\right\}`
$
$
`\Longrightarrow`
$
$
`\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\dfrac{d}{dt}\Big(\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}\Big)`
$
*
$
`\left.\begin{array}{l}
\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\dfrac{d}{dt}\Big(\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}\Big) \\
\iint_{S} \;\overrightarrow{rot}\;\overrightarrow{E} \cdot dS = \oint_{\,\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
\end{array}\right\}
\Longrightarrow`
$
\end{array}\right\}
`
$
$
`
\Longrightarrow`
$
**
$
`\begin{array}{l}
\\
\mathbf{\displaystyle\quad\oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}= -\dfrac{d}{dt}\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}}
...
...
@@ -188,14 +189,14 @@ $`\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\
$
`\forall \overrightarrow{r}, \overrightarrow{rot} \,\overrightarrow{B} = \mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}`
$
$
`\Longrightarrow \iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \iint_S\Big(\mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\Big)\cdot\overrightarrow{dS}`
$
$
`\Longrightarrow
`
$$
`
\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \iint_S\Big(\mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\Big)\cdot\overrightarrow{dS}`
$
$
`\left.\begin{array}{l}
\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \iint_S\Big(\mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\Big)\cdot\overrightarrow{dS} \\
\text{Newton : espace et temps indépendants}
\end{array}\right\}
\Longrightarrow`
$
$
`\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \mu_0\iint_S \overrightarrow{j}\cdot\overrightarrow{dS} +
\end{array}\right\}
`
$
$
`
\Longrightarrow`
$
$
`\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS}
`
$$
`\;
= \mu_0\iint_S \overrightarrow{j}\cdot\overrightarrow{dS} +
\mu_0 \epsilon_0\dfrac{d}{dt}\iint_S\overrightarrow{E}\cdot\overrightarrow{dS}`
$
$
`\left.\begin{array}{l}
...
...
@@ -206,7 +207,7 @@ $`\left.\begin{array}{l}
$
`\Longrightarrow`
$
**
$
`\begin{array}{l}
\\
\mathbf{\displaystyle\;\,\oint_{\,\Gamma\leftrightarrow S} \overrightarrow{B}\cdot\overrightarrow{dl}=
\mathbf{\displaystyle\;\,\oint_{\,\Gamma\leftrightarrow S} \overrightarrow{B}\cdot\overrightarrow{dl}
—`
$$
`\mathbf{
=
\mu_0\iint_S \overrightarrow{j}\cdot\overrightarrow{dS} +
\mu_0 \epsilon_0\dfrac{d}{dt}\iint_S\overrightarrow{E}\cdot\overrightarrow{dS}}
\end{array}`
$
**
...
...
@@ -215,11 +216,11 @@ $`\Longrightarrow`$
#### Pourquoi parlons-nous de champ électromagnétique ?
*
Les 2 équations de couplage de $
`\overrightarr
iw{E}`
$ et $
`\overrightarri
w{B}`
$ impliquent
que variables, $
`\overrightarr
iw{E}`
$ et $
`\overrightarri
w{B}`
$ ne peuvent exister l'un sans l'autre.
*
Les 2 équations de couplage de $
`\overrightarr
ow{E}`
$ et $
`\overrightarro
w{B}`
$ impliquent
que variables, $
`\overrightarr
ow{E}`
$ et $
`\overrightarro
w{B}`
$ ne peuvent exister l'un sans l'autre.
*
Le terme $
`\dfrac{\partial\overrightarrow{B}}{\partial t}\ne 0`
$ implique $
`\overrightarr
iw{E}\ne \overrightarri
w{0}`
$
*
Le terme $
`\dfrac{\partial\overrightarrow{E}}{\partial t}\ne 0`
$ implique $
`\overrightarr
iw{B}\ne \overrightarri
w{0}`
$
*
Le terme $
`\dfrac{\partial\overrightarrow{B}}{\partial t}\ne 0`
$ implique $
`\overrightarr
ow{E}\ne \overrightarro
w{0}`
$
*
Le terme $
`\dfrac{\partial\overrightarrow{E}}{\partial t}\ne 0`
$ implique $
`\overrightarr
ow{B}\ne \overrightarro
w{0}`
$
#### Le champ électromagnétique contient-t-il de l'énergie ?
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment