Commit 98f8a777 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 6abe4a92
Pipeline #13303 canceled with stage
...@@ -418,7 +418,7 @@ $`\begin{align} ...@@ -418,7 +418,7 @@ $`\begin{align}
$`\color{brown}{\mathbf{\; = X_{\alpha}\,dl_{\alpha}+X_{\beta}\,dl_{\beta}+X_{\gamma}\,dl_{\gamma}}}`$ $`\color{brown}{\mathbf{\; = X_{\alpha}\,dl_{\alpha}+X_{\beta}\,dl_{\beta}+X_{\gamma}\,dl_{\gamma}}}`$
Par ailleurs,$`\phi`$ étant un champ scalaire, sa différentielle exprimée en fonction des $`d\alpha\,,d\beta\,,d\gamma`$ s'écrit : Par ailleurs, $`\phi`$ étant un champ scalaire, sa différentielle exprimée en fonction des $`d\alpha\,,d\beta\,,d\gamma`$ s'écrit :
<!--------------------- <!---------------------
$`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\alpha} + \left.\dfrac{\partial \phi}{\partial \beta}\right|_M\cdot dl_{\beta} + \left.\dfrac{\partial \phi}{\partial \gamma}\right|_M\cdot dl_{\gamma}}`$ $`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\alpha} + \left.\dfrac{\partial \phi}{\partial \beta}\right|_M\cdot dl_{\beta} + \left.\dfrac{\partial \phi}{\partial \gamma}\right|_M\cdot dl_{\gamma}}`$
...@@ -427,31 +427,29 @@ $`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\ ...@@ -427,31 +427,29 @@ $`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\
*$`\color{blue}{\mathbf{d\phi}}`$*$`\;=\dfrac{\partial \phi}{\partial \alpha}\cdot d\alpha + \dfrac{\partial \phi}{\partial \beta}\cdot d\beta + \dfrac{\partial \phi}{\partial \gamma}\cdot d\gamma`$ *$`\color{blue}{\mathbf{d\phi}}`$*$`\;=\dfrac{\partial \phi}{\partial \alpha}\cdot d\alpha + \dfrac{\partial \phi}{\partial \beta}\cdot d\beta + \dfrac{\partial \phi}{\partial \gamma}\cdot d\gamma`$
*$`\color{blue}{\;= *$`\color{blue}{\;=
\dfrac{\partial \phi}{\partial \alpha}\,\dfrac{\partial \alpha}{\partial dl_{\alpha}}\, \mathbf{dl_{\alpha}} \dfrac{\partial \phi}{\partial \alpha}\,\dfrac{\partial \alpha}{\partial l_{\alpha}}\, \mathbf{dl_{\alpha}}
+\dfrac{\partial \phi}{\partial \beta}\,\dfrac{\partial \beta}{\partial dl_{\beta}}\, \mathbf{dl_{\beta}} +\dfrac{\partial \phi}{\partial \beta}\,\dfrac{\partial \beta}{\partial l_{\beta}}\, \mathbf{dl_{\beta}}
+\dfrac{\partial \phi}{\partial \gamma}\,\dfrac{\partial \gamma}{\partial dl_{\gamma}}\, \mathbf{dl_{\gamma}}}`$* +\dfrac{\partial \phi}{\partial \gamma}\,\dfrac{\partial \gamma}{\partial l_{\gamma}}\, \mathbf{dl_{\gamma}}}`$*
La comparaison terme à terme de ces deux expressions de $'d\phi`$ donne : La comparaison terme à terme de ces deux expressions de $`d\phi`$ donne :
$`X_{\alpha}=\dfrac{\partial \phi}{\partial \alpha}\,\dfrac{\partial \alpha}{\partial dl_{\alpha}}\quad`$, $`X_{\alpha}=\dfrac{\partial \phi}{\partial \alpha}\,\dfrac{\partial \alpha}{\partial l_{\alpha}}\quad`$,$`\quad X_{\beta}=\dfrac{\partial \phi}{\partial \beta}\,\dfrac{\partial \beta}{\partial l_{\beta}}\quad`$,$`\quad X_{\alpha}=\dfrac{\partial \phi}{\partial \gamma}\,\dfrac{\partial \gamma}{\partial l_{\gamma}}`$
$`\quad X_{\beta}=\dfrac{\partial \phi}{\partial \beta}\,\dfrac{\partial \beta}{\partial dl_{\beta}}\quad`$,
$`\quad X_{\alpha}=\dfrac{\partial \phi}{\partial \gamma}\,\dfrac{\partial \gamma}{\partial dl_{\gamma}}`$
Soit Soit
$`\color{brown}{\mathbf{ $`\color{brown}{\mathbf{
\overrightarrow{grad}\,\phi= \overrightarrow{grad}\,\phi=
\dfrac{\partial \alpha}{\partial dl_{\alpha}}\,\dfrac{\partial \phi}{\partial \alpha}\,\overrightarrow{e_{\alpha}} \dfrac{\partial \alpha}{\partial l_{\alpha}}\,\dfrac{\partial \phi}{\partial \alpha}\,\overrightarrow{e_{\alpha}}
+\dfrac{\partial \beta}{\partial dl_{\beta}}\,\dfrac{\partial \phi}{\partial \beta}\,\overrightarrow{e_{\beta}} +\dfrac{\partial \beta}{\partial l_{\beta}}\,\dfrac{\partial \phi}{\partial \beta}\,\overrightarrow{e_{\beta}}
+\dfrac{\partial \gamma}{\partial dl_{\gamma}}\,\dfrac{\partial \phi}{\partial \gamma}\,\overrightarrow{e_{\gamma}} +\dfrac{\partial \gamma}{\partial l_{\gamma}}\,\dfrac{\partial \phi}{\partial \gamma}\,\overrightarrow{e_{\gamma}}
}}`$ }}`$
##### Expression du gradient en coordonnées cartésiennes ##### Expression du gradient en coordonnées cartésiennes
$`\left.\begin{align} $`\left.\begin{align}
dl_x=dx \Longrightarrow \dfrac{\partial x}{\partial dl_x}=1\\ dl_x=dx \Longrightarrow \dfrac{\partial x}{\partial l_x}=1\\
dl_y=dy \Longrightarrow \dfrac{\partial y}{\partial dl_y}=1\\ dl_y=dy \Longrightarrow \dfrac{\partial y}{\partial l_y}=1\\
dl_z=dz \Longrightarrow \dfrac{\partial z}{\partial dl_z}=1\\ dl_z=dz \Longrightarrow \dfrac{\partial z}{\partial l_z}=1\\
\end{align}\right\}`$ \end{align}\right\}`$
$`\Longrightarrow\color{brown}{\mathbf{ $`\Longrightarrow\color{brown}{\mathbf{
\overrightarrow{grad}\,\phi= \overrightarrow{grad}\,\phi=
...@@ -461,12 +459,20 @@ $`\Longrightarrow\color{brown}{\mathbf{ ...@@ -461,12 +459,20 @@ $`\Longrightarrow\color{brown}{\mathbf{
}}`$ }}`$
* $`dl_x=dx \Longrightarrow $`\dfrac{\partial x}{\partial dl_{x}}=1`$
* $`dl_y=dy \Longrightarrow $`\dfrac{\partial y}{\partial dl_{y}}=1`$
* $`dl_z=dz \Longrightarrow $`\dfrac{\partial z}{\partial dl_{z}}=1`$
##### Expression du gradient en coordonnées cylindriques ##### Expression du gradient en coordonnées cylindriques
$`\left.\begin{align}
dl_{\rho}=d\rho\Longrightarrow \dfrac{\partial \rho}{\partial l_{\rho}}=1\\
dl_{\varphi}=\rho\,d{\varphi} \Longrightarrow \dfrac{\partial \varphi}{\partial l_{\varphi}}=\dfrac{1}{\rho}\\
dl_z=dz \Longrightarrow \dfrac{\partial z}{\partial l_z}=1\\
\end{align}\right\}`$
$`\Longrightarrow\color{brown}{\mathbf{
\overrightarrow{grad}\,\phi=
\dfrac{\partial \phi}{\partial \rho}\,\overrightarrow{e_{\rho}}
+\dfrac{1}{\rho}\,\dfrac{\partial \phi}{\partial y}\,\overrightarrow{e_{\varphi}}
+\dfrac{\partial \phi}{\partial z}\,\overrightarrow{e_z}
}}`$
##### Expression du gradient en coordonnées sphériques ##### Expression du gradient en coordonnées sphériques
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment