Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
98f8a777
Commit
98f8a777
authored
Sep 06, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
6abe4a92
Pipeline
#13303
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
24 additions
and
18 deletions
+24
-18
cheatsheet.fr.md
...ive-vector-fields-properties/20.overview/cheatsheet.fr.md
+24
-18
No files found.
12.temporary_ins/08.conservative-vector-fields/20.conservative-vector-fields-properties/20.overview/cheatsheet.fr.md
View file @
98f8a777
...
...
@@ -418,7 +418,7 @@ $`\begin{align}
$
`\color{brown}{\mathbf{\; = X_{\alpha}\,dl_{\alpha}+X_{\beta}\,dl_{\beta}+X_{\gamma}\,dl_{\gamma}}}`
$
Par ailleurs,$
`\phi`
$ étant un champ scalaire, sa différentielle exprimée en fonction des $
`d\alpha\,,d\beta\,,d\gamma`
$ s'écrit :
Par ailleurs,
$
`\phi`
$ étant un champ scalaire, sa différentielle exprimée en fonction des $
`d\alpha\,,d\beta\,,d\gamma`
$ s'écrit :
<!---------------------
$
`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\alpha} + \left.\dfrac{\partial \phi}{\partial \beta}\right|_M\cdot dl_{\beta} + \left.\dfrac{\partial \phi}{\partial \gamma}\right|_M\cdot dl_{\gamma}}`
$
...
...
@@ -427,31 +427,29 @@ $`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\
*$`\color{blue}{\mathbf{d\phi}}`$*
$
`\;=\dfrac{\partial \phi}{\partial \alpha}\cdot d\alpha + \dfrac{\partial \phi}{\partial \beta}\cdot d\beta + \dfrac{\partial \phi}{\partial \gamma}\cdot d\gamma`
$
*
$
`\color{blue}{\;=
\dfrac{\partial \phi}{\partial \alpha}\,\dfrac{\partial \alpha}{\partial
d
l_{\alpha}}\, \mathbf{dl_{\alpha}}
+\dfrac{\partial \phi}{\partial \beta}\,\dfrac{\partial \beta}{\partial
d
l_{\beta}}\, \mathbf{dl_{\beta}}
+\dfrac{\partial \phi}{\partial \gamma}\,\dfrac{\partial \gamma}{\partial
d
l_{\gamma}}\, \mathbf{dl_{\gamma}}}`
$
*
\dfrac{\partial \phi}{\partial \alpha}\,\dfrac{\partial \alpha}{\partial l_{\alpha}}\, \mathbf{dl_{\alpha}}
+\dfrac{\partial \phi}{\partial \beta}\,\dfrac{\partial \beta}{\partial l_{\beta}}\, \mathbf{dl_{\beta}}
+\dfrac{\partial \phi}{\partial \gamma}\,\dfrac{\partial \gamma}{\partial l_{\gamma}}\, \mathbf{dl_{\gamma}}}`
$
*
La comparaison terme à terme de ces deux expressions de $
'
d
\p
hi
`$ donne :
La comparaison terme à terme de ces deux expressions de $
`
d\phi`
$ donne :
$`
X_{
\a
lpha}=
\d
frac{
\p
artial
\p
hi}{
\p
artial
\a
lpha}
\,\d
frac{
\p
artial
\a
lpha}{
\p
artial dl_{
\a
lpha}}
\q
uad
`$,
$`
\q
uad X_{
\b
eta}=
\d
frac{
\p
artial
\p
hi}{
\p
artial
\b
eta}
\,\d
frac{
\p
artial
\b
eta}{
\p
artial dl_{
\b
eta}}
\q
uad
`$,
$`
\q
uad X_{
\a
lpha}=
\d
frac{
\p
artial
\p
hi}{
\p
artial
\g
amma}
\,\d
frac{
\p
artial
\g
amma}{
\p
artial dl_{
\g
amma}}
`$
$
`X_{\alpha}=\dfrac{\partial \phi}{\partial \alpha}\,\dfrac{\partial \alpha}{\partial l_{\alpha}}\quad`
$,$
`\quad X_{\beta}=\dfrac{\partial \phi}{\partial \beta}\,\dfrac{\partial \beta}{\partial l_{\beta}}\quad`
$,$
`\quad X_{\alpha}=\dfrac{\partial \phi}{\partial \gamma}\,\dfrac{\partial \gamma}{\partial l_{\gamma}}`
$
Soit
$
`\color{brown}{\mathbf{
\overrightarrow{grad}\,\phi=
\d
frac{
\p
artial
\a
lpha}{
\p
artial
d
l_{
\a
lpha}}
\,\d
frac{
\p
artial
\p
hi}{
\p
artial
\a
lpha}
\,\o
verrightarrow{e_{
\a
lpha}}
+
\d
frac{
\p
artial
\b
eta}{
\p
artial
d
l_{
\b
eta}}
\,\d
frac{
\p
artial
\p
hi}{
\p
artial
\b
eta}
\,\o
verrightarrow{e_{
\b
eta}}
+
\d
frac{
\p
artial
\g
amma}{
\p
artial
d
l_{
\g
amma}}
\,\d
frac{
\p
artial
\p
hi}{
\p
artial
\g
amma}
\,\o
verrightarrow{e_{
\g
amma}}
\dfrac{\partial \alpha}{\partial l_{\alpha}}\,\dfrac{\partial \phi}{\partial \alpha}\,\overrightarrow{e_{\alpha}}
+\dfrac{\partial \beta}{\partial l_{\beta}}\,\dfrac{\partial \phi}{\partial \beta}\,\overrightarrow{e_{\beta}}
+\dfrac{\partial \gamma}{\partial l_{\gamma}}\,\dfrac{\partial \phi}{\partial \gamma}\,\overrightarrow{e_{\gamma}}
}}`
$
##### Expression du gradient en coordonnées cartésiennes
$
`\left.\begin{align}
dl_x=dx
\L
ongrightarrow
\d
frac{
\p
artial x}{
\p
artial
d
l_x}=1
\\
dl_y=dy
\L
ongrightarrow
\d
frac{
\p
artial y}{
\p
artial
d
l_y}=1
\\
dl_z=dz
\L
ongrightarrow
\d
frac{
\p
artial z}{
\p
artial
d
l_z}=1
\\
dl_x=dx \Longrightarrow \dfrac{\partial x}{\partial l_x}=1\\
dl_y=dy \Longrightarrow \dfrac{\partial y}{\partial l_y}=1\\
dl_z=dz \Longrightarrow \dfrac{\partial z}{\partial l_z}=1\\
\end{align}\right\}`
$
$
`\Longrightarrow\color{brown}{\mathbf{
\overrightarrow{grad}\,\phi=
...
...
@@ -461,12 +459,20 @@ $`\Longrightarrow\color{brown}{\mathbf{
}}`
$
* $`
dl_x=dx
\L
ongrightarrow $
`\dfrac{\partial x}{\partial dl_{x}}=1`
$
*
$
`dl_y=dy \Longrightarrow $`
\d
frac{
\p
artial y}{
\p
artial dl_{y}}=1
`$
* $`
dl_z=dz
\L
ongrightarrow $
`\dfrac{\partial z}{\partial dl_{z}}=1`
$
##### Expression du gradient en coordonnées cylindriques
$
`\left.\begin{align}
dl_{\rho}=d\rho\Longrightarrow \dfrac{\partial \rho}{\partial l_{\rho}}=1\\
dl_{\varphi}=\rho\,d{\varphi} \Longrightarrow \dfrac{\partial \varphi}{\partial l_{\varphi}}=\dfrac{1}{\rho}\\
dl_z=dz \Longrightarrow \dfrac{\partial z}{\partial l_z}=1\\
\end{align}\right\}`
$
$
`\Longrightarrow\color{brown}{\mathbf{
\overrightarrow{grad}\,\phi=
\dfrac{\partial \phi}{\partial \rho}\,\overrightarrow{e_{\rho}}
+\dfrac{1}{\rho}\,\dfrac{\partial \phi}{\partial y}\,\overrightarrow{e_{\varphi}}
+\dfrac{\partial \phi}{\partial z}\,\overrightarrow{e_z}
}}`
$
##### Expression du gradient en coordonnées sphériques
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment