Commit ac2d41f7 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 7ccd1f22
Pipeline #4898 canceled with stage
...@@ -213,8 +213,8 @@ $`\displaystyle=\int_{-x_0/2}^{+x_0/2} e^{\dfrac{i\,2\,\pi\,u_x\,x}{\lambda}}\; ...@@ -213,8 +213,8 @@ $`\displaystyle=\int_{-x_0/2}^{+x_0/2} e^{\dfrac{i\,2\,\pi\,u_x\,x}{\lambda}}\;
$`\displaystyle \underline{A}=\dfrac{\lambda}{i\,2\,\pi\,u_x}\left(e^{\dfrac{i\,\pi\,u_x\,x_0}{\lambda}}-\;e^{\dfrac{-i\,\pi\,u_x\,x_0}{\lambda}}\right)`$ $`\displaystyle \underline{A}=\dfrac{\lambda}{i\,2\,\pi\,u_x}\left(e^{\dfrac{i\,\pi\,u_x\,x_0}{\lambda}}-\;e^{\dfrac{-i\,\pi\,u_x\,x_0}{\lambda}}\right)`$
$`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{i\,2\,\pi\,u_x}`$ $`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{i\,2\,\pi\,u_x}`$
$`\left[ \left(cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right.`$ $`\left[ \left(cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right.\right.`$
$`\left.\;+i\;sin\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right.`$ $`\left.\;+i\;sin\dfrac{\pi\,u_x\,x_0}{\lambda}\right)`$
$`\left.-\left( cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}-i\;sin\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right]`$ $`\left.-\left( cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}-i\;sin\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right]`$
$`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{2\pi,u_x} \left( 2\,sin \;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)`$ $`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{2\pi,u_x} \left( 2\,sin \;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)`$
...@@ -255,8 +255,7 @@ $`=\;sin\,\theta\cdot\overrightarrow{e_x}\;+\;cos\,\theta\cdot\overrightarrow{e_ ...@@ -255,8 +255,7 @@ $`=\;sin\,\theta\cdot\overrightarrow{e_x}\;+\;cos\,\theta\cdot\overrightarrow{e_
ainsi l'intensité diffractée à l'infini se réécrit ainsi l'intensité diffractée à l'infini se réécrit
$`I(\theta)=x_0^2\cdot \dfrac{sin^2\,\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)}`$ $`I(\theta)=x_0^2\cdot \dfrac{sin^2\,\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)}{\left(\dfrac{\pi\,x_0\,sin\,\theta}{\lambda}\right)^2}`$
$`\;{\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)^2}`$
$`\quad=x_0^2\cdot sinc^2\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)`$ $`\quad=x_0^2\cdot sinc^2\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment