Commit b39d59b5 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 1ef4109a
Pipeline #13985 canceled with stage
......@@ -523,6 +523,7 @@ $`\begin{align}
&=\omega\;\overrightarrow{e_{\theta}}
\end{align}`$
-----------
$`\begin{align}
\dfrac{d\overrightarrow{e_{\theta}}}{dt}&=\dfrac{d}{dt}\big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\big)\\
......@@ -535,21 +536,38 @@ $`\begin{align}
\\
&=\omega\;\Big(-\cos\theta\;\overrightarrow{e_x}-\sin\theta\;\overrightarrow{e_z}\Big)\\
\\
&=-\omega\;\overrightarrow{e_{\rho}}
&=-\;\omega\;\overrightarrow{e_{\rho}}
\end{align}`$
--------------
$`\begin{align}
\overrrightarrow{\mathscr{v_M}}&=\dfrac{d\overrightarrow{OM}}{dt}=\dfrac{d}{dt}\left(\rho_M\overrightarrow{e_{\rho}\right)\\
&=\dfrac{d\rho}{dt}\overrightarrow{e_(\rho)}+\rho\dfrac{d\\overrightarrow{e_{\rho}}{dt}\\
&=\dfrac{d\rho}{dt}\overrightarrow{e_(\rho)}+\rho\dfrac{d\\overrightarrow{e_{\rho}}{dt}
\dfrac{d\overrightarrow{e_{\theta}}}{dt}&=\dfrac{d}{dt}\big(-\sin\theta\;\overrightarrow{e_x}+\cos\theta\;\overrightarrow{e_z}\big)\\
\\
&=\Big[\dfrac{d(-\sin\theta)}{dt}\;\overrightarrow{e_x} - \sin\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\Big]\\
&\quad\quad+\bigg[\dfrac{d\cos\theta}{dt}\;\overrightarrow{e_z}+\cos\theta\;\underbrace{\dfrac{d\overrightarrow{e_z}}{dt}}_{=\vec{0}}\bigg]\\
\\
&=\dfrac{d(-\sin\theta)}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_x}
+\dfrac{d\cos\theta}{d\theta}\;\underbrace{\dfrac{d\theta}{dt}}_{=\,\omega}\;\overrightarrow{e_z}\\
\\
&=\omega\;\Big(-\cos\theta\;\overrightarrow{e_x}-\sin\theta\;\overrightarrow{e_z}\Big)\\
\\
&=-\;\omega\;\overrightarrow{e_{\rho}}
\end{align}`$
---------------
$`\begin{align}
\dfrac{d^2\overrightarrow{e_{\theta}}}{dt^2}&=\dfrac{d}{dt}\left(\underbrace{\dfrac{d\overrightarrow{e_{\rho}}}{dt}}_{=\omega\,\vec{e_{\theta}}\right)\\
\\
&=\dfrac{d}{dt}\left(\omega\,\overrightarrow{e_{\theta}}\right)\\
\\
&=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}+\omega\;\dfrac{d\overrightarrow{e_{\theta}}}{dt}\\
\\
&=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}+\omega\;\big(-\;\omega\;\overrightarrow{e_{\rho}}\big)\\
\\
&=\dfrac{d\omega}{dt}\;\overrightarrow{e_{\theta}}-\omega^2\;\overrightarrow{e_{\rho}}
\end{align}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment