Commit bd8d942b authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 3e94ba21
Pipeline #15970 canceled with stage
...@@ -1612,6 +1612,7 @@ $`\quad\quad \;\; = \cdots`$ ...@@ -1612,6 +1612,7 @@ $`\quad\quad \;\; = \cdots`$
------------------------- -------------------------
<br>
**Calcul de l'onde résultante** *en notation complexe* **Calcul de l'onde résultante** *en notation complexe*
...@@ -1689,7 +1690,7 @@ $`\quad\quad \;\; = \cdots`$ ...@@ -1689,7 +1690,7 @@ $`\quad\quad \;\; = \cdots`$
**$`\quad\;\; = -2i\;sin(\theta_{12})\; e^{\,i\,\theta_{moy}}`$** **$`\quad\;\; = -2i\;sin(\theta_{12})\; e^{\,i\,\theta_{moy}}`$**
<br> <br>
* Nous obtenons l'**expression finale** de l'onde résultante de la *superposition de deux OPPH* quelconques : * Nous obtenons l'**expression complexe** de l'onde résultante de la *superposition de deux OPPH* quelconques :
<br> <br>
**$`\underline{U}(\overrightarrow{r},t)`$** **$`\underline{U}(\overrightarrow{r},t)`$**
<br> <br>
...@@ -1699,9 +1700,24 @@ $`\quad\quad \;\; = \cdots`$ ...@@ -1699,9 +1700,24 @@ $`\quad\quad \;\; = \cdots`$
**$`\begin{array}\quad = &+\,2\,A_{moy}\,cos(\theta_{12})\; e^{\,i\,\theta_{moy}}\\ **$`\begin{array}\quad = &+\,2\,A_{moy}\,cos(\theta_{12})\; e^{\,i\,\theta_{moy}}\\
&-\,2i\,\Delta A_{1-2}\,sin(\theta_{12})\; e^{\,i\,\theta_{moy}}\end{array}`$** &-\,2i\,\Delta A_{1-2}\,sin(\theta_{12})\; e^{\,i\,\theta_{moy}}\end{array}`$**
<br> <br>
L'**onde réelle** est la *partie réelle de l'onde complexe* :
* L'**onde réelle** est la *partie réelle de l'onde complexe* :
<br> <br>
$`U(\overrightarrow{r},t)\,=\,\mathbb{R}e\big(\underline{U}(\overrightarrow{r},t))`$
<br>
$`\begin{array}\quad = &+\,2\,A_{moy}\,cos(\theta_{12})\; e^{\,i\,\theta_{moy}}\\
&-\,2i\,\Delta A_{1-2}\,sin(\theta_{12})\; e^{\,i\,\theta_{moy}}\end{array}`$
<br>
$`\color{blue}{\scriptsize{exp(ia)\,=\, cos\,a\,+\,i\, sin\,a}}`$
<br>
$`\begin{array}\quad = &\mathbb{R}e \big[\,2\,A_{moy}\,cos(\theta_{12})\;(cos\,\theta_{moy}\,+\,isin\,\theta_{moy}})\\
&-\,2i\,\Delta A_{1-2}\,sin(\theta_{12})\;(cos\,\theta_{moy}\,+\,isin\,\theta_{moy}})\big]\end{array}`$
<br>
$`\begin{array}\quad = &2\times\mathbb{R}e \big[\,A_{moy}\,cos(\theta_{12})\;cos\,\theta_{moy}\,-\,sin\,\theta_{moy}})\\
&-\,2i\,\Delta A_{1-2}\,sin(\theta_{12})\;(cos\,\theta_{moy}\,+\,isin\,\theta_{moy}})\end{array}`$
**$`\begin{array}\quad = &+\,2\,A_{moy}\,cos\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\ **$`\begin{array}\quad = &+\,2\,A_{moy}\,cos\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
&\quad\times\,cos\big(\Delta \omega_{12} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{12}\big)\\ &\quad\times\,cos\big(\Delta \omega_{12} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{12}\big)\\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment