Commit c0fe6a20 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent fe480ab6
Pipeline #14775 canceled with stage
...@@ -284,8 +284,8 @@ and ...@@ -284,8 +284,8 @@ and
$`\overrightarrow{B}_{\perp}= $`\overrightarrow{B}_{\perp}=
\left(\begin{array}{l} \left(\begin{array}{l}
0\\ 0\\
\dfrac{E_0}{c}\dfrac{k_z}{k}\sin\big(\frac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t)\\ \dfrac{E_0}{c}\dfrac{k_z}{k}\sin\big(\dfrac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t)\\
\dfrac{E_0}{c}\dfrac{n\pi}{b\,k}\cos\big(\frac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t) \dfrac{E_0}{c}\dfrac{n\pi}{b\,k}\cos\big(\dfrac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t)
\end{array}\right)`$ \end{array}\right)`$
$`\quad(eq. 4.12)`$ $`\quad(eq. 4.12)`$
...@@ -295,17 +295,28 @@ $`\langle\overrightarrow{P}\rangle= ...@@ -295,17 +295,28 @@ $`\langle\overrightarrow{P}\rangle=
\dfrac{1}{2}\,\dfrac{E_0^{\;2}}{c\mu_0}\,\dfrac{k_z}{z}\,\sin^2\Big(\dfrac{n\pi}{b}\,y\Big)\,\overrightarrow{e_z}`$ \dfrac{1}{2}\,\dfrac{E_0^{\;2}}{c\mu_0}\,\dfrac{k_z}{z}\,\sin^2\Big(\dfrac{n\pi}{b}\,y\Big)\,\overrightarrow{e_z}`$
$`\quad(eq. 4.13)`$ $`\quad(eq. 4.13)`$
The power transmitted by the guide (units \[*W* \]) can be found by The power transmitted by the guide (units $`W`$) can be found by
integrating the previous results over the cross-section of the integrating the previous results over the cross-section of the
waveguide waveguide
$`\displaystyle\mathscr{P}=\int_0^a\int_0^b\langle P\rangle\,dx\,dy=\dfrac{1}{4}\,\dfrac{E_0^{\;2}}{c\mu_0}\,\dfrac{k_z}{k}`$
$`\quad(eq. 4.14)`$
i.e. the transmitted power is proportional to the cross-sectional area i.e. the transmitted power is proportional to the cross-sectional area
of the waveguide. The practical limit of transmittable power is set by of the waveguide. The practical limit of transmittable power is set by
the dielectric breakdown of the dielectric filling the waveguide. In the dielectric breakdown of the dielectric filling the waveguide. In
case of dry air, this limit is of about 3 MV/m. case of dry air, this limit is of about $`3\;MV/m`$.
!!!!! *Exercice 4.2 : Transmitted power*
!!!!!
!!!!! 1) Estimate the maximum power transmittable by a rectangular waveguide
!!!!! of dimensions $`b=2.5\,cm\;,\; a=1b=2.5, a=1\,cm`$ at $`f=9.24\,GHz`$ filled with dry air
!!!!! for the mode $`TE_{0,1}`$.
!!!!!
!!!!! 2) Rewrite equation 4.14 in case the guide is filled with a perfect dielectric
!!!!! with refractive index $`n`$.
# Exercices solved during tutorials # Exercices solved during tutorials
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment