Commit fe480ab6 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 09273f38
Pipeline #14774 canceled with stage
......@@ -275,27 +275,33 @@ Let's consider a $`TE_{0,n}`$ mode as described by equations
"-2" from the amplitudes and use the fact that
$`k\,\cos\theta=k_y=n\pi/b`$ and $`k\,\sin\theta=k_z`$. We get
$`\overrightarrow{E}_{\perp}=`$$`E_0\,\sin\Big(\dfrac{n\pi}{b}\,y\Big)\,\sin(k_z\,z-\omega\,t})\overrightarrow{e_x}`$
$`\overrightarrow{E}_{\perp}=`$$`E_0\,\sin\Big(\dfrac{n\pi}{b}\,y\Big)\,\sin(k_z\,z-\omega\,t)\overrightarrow{e_x}`$
$`\quad(eq. 4.11)`$
and
$`\overrightarrow{B}_{\perp}=`$
$`\left(\begin{array}{l}
$`\overrightarrow{B}_{\perp}=
\left(\begin{array}{l}
0\\
\dfrac{E_0}{c}\dfrac{k_z}{k}\sin\big(\frac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t)\\
\dfrac{E_0}{c}\dfrac{n\pi}{b\,k}\cos\big(\frac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t)
\end{array}\right)`$$`\quad(eq. 4.12)`$
\end{array}\right)`$
$`\quad(eq. 4.12)`$
The time-averaged Poynting vector becomes:
$`\langle\overrightarrow{P}\rangle=
\dfrac{1}{2}\,\dfrac{E_0^{\;2}}{c\mu_0}\,\dfrac{k_z}{z}\,\sin^2\Big(\dfrac{n\pi}{b}\,y\Big)\,\overrightarrow{e_z}`$
$`\quad(eq. 4.13)`$
The power transmitted by the guide (units \[*W* \]) can be found by
integrating the previous results over the cross-section of the
waveguide
i.e. the transmitted power is proportional to the cross-sectional area
of the waveguide. The practical limit of transmittable power is set by
the dielectric breakdown of the dielectric filling the waveguide. In
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment