Commit fe480ab6 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 09273f38
Pipeline #14774 canceled with stage
...@@ -275,27 +275,33 @@ Let's consider a $`TE_{0,n}`$ mode as described by equations ...@@ -275,27 +275,33 @@ Let's consider a $`TE_{0,n}`$ mode as described by equations
"-2" from the amplitudes and use the fact that "-2" from the amplitudes and use the fact that
$`k\,\cos\theta=k_y=n\pi/b`$ and $`k\,\sin\theta=k_z`$. We get $`k\,\cos\theta=k_y=n\pi/b`$ and $`k\,\sin\theta=k_z`$. We get
$`\overrightarrow{E}_{\perp}=`$$`E_0\,\sin\Big(\dfrac{n\pi}{b}\,y\Big)\,\sin(k_z\,z-\omega\,t})\overrightarrow{e_x}`$ $`\overrightarrow{E}_{\perp}=`$$`E_0\,\sin\Big(\dfrac{n\pi}{b}\,y\Big)\,\sin(k_z\,z-\omega\,t)\overrightarrow{e_x}`$
$`\quad(eq. 4.11)`$ $`\quad(eq. 4.11)`$
and and
$`\overrightarrow{B}_{\perp}=`$ $`\overrightarrow{B}_{\perp}=
$`\left(\begin{array}{l} \left(\begin{array}{l}
0\\ 0\\
\dfrac{E_0}{c}\dfrac{k_z}{k}\sin\big(\frac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t)\\ \dfrac{E_0}{c}\dfrac{k_z}{k}\sin\big(\frac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t)\\
\dfrac{E_0}{c}\dfrac{n\pi}{b\,k}\cos\big(\frac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t) \dfrac{E_0}{c}\dfrac{n\pi}{b\,k}\cos\big(\frac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t)
\end{array}\right)`$$`\quad(eq. 4.12)`$ \end{array}\right)`$
$`\quad(eq. 4.12)`$
The time-averaged Poynting vector becomes: The time-averaged Poynting vector becomes:
$`\langle\overrightarrow{P}\rangle=
\dfrac{1}{2}\,\dfrac{E_0^{\;2}}{c\mu_0}\,\dfrac{k_z}{z}\,\sin^2\Big(\dfrac{n\pi}{b}\,y\Big)\,\overrightarrow{e_z}`$
$`\quad(eq. 4.13)`$
The power transmitted by the guide (units \[*W* \]) can be found by The power transmitted by the guide (units \[*W* \]) can be found by
integrating the previous results over the cross-section of the integrating the previous results over the cross-section of the
waveguide waveguide
i.e. the transmitted power is proportional to the cross-sectional area i.e. the transmitted power is proportional to the cross-sectional area
of the waveguide. The practical limit of transmittable power is set by of the waveguide. The practical limit of transmittable power is set by
the dielectric breakdown of the dielectric filling the waveguide. In the dielectric breakdown of the dielectric filling the waveguide. In
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment