Commit c7efce1d authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent d632df9f
Pipeline #13840 canceled with stage
...@@ -223,16 +223,18 @@ $`\delta \mathcal{S}=\displaystyle\int_{t_1}^{t_2} ...@@ -223,16 +223,18 @@ $`\delta \mathcal{S}=\displaystyle\int_{t_1}^{t_2}
$`\quad=\displaystyle\int_{t_1}^{t_2} $`\quad=\displaystyle\int_{t_1}^{t_2}
\bigg[ \bigg[
\dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i \dfrac{\partial\mathcal{L}}{\partial x_i}
-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\bigg]\,\delta x_i\,dt`$ -\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\bigg]\,\delta x_i\,dt`$
Stationnarité de l'action impose $`\delta \mathcal{S}=0`$ Stationnarité de l'action impose $`\delta \mathcal{S}=0`$
d'où l'équation d'Euler-Lagrange : d'où l'équation d'Euler-Lagrange :
$`\dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i $`\dfrac{\partial\mathcal{L}}{\partial x_i}
-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}`$ -\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}=0`$
$`\dfrac{\partial\mathcal{L}}{\partial x_i}
-\dfrac{d}{dt}\bigg(\,\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\bigg)=0`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment