Commit d2abd139 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 3ed7c153
Pipeline #16458 canceled with stage
...@@ -54,16 +54,14 @@ valeurs et vecteurs propres ...@@ -54,16 +54,14 @@ valeurs et vecteurs propres
Soit $`M`$ une matrice réelle carré de dimension $`m\times m`$. Soit $`M`$ une matrice réelle carré de dimension $`m\times m`$.
Par définition : $`\forall k\in \mathbb{N}^{*}\,,\,`$ Par définition : $`\forall k\in \mathbb{N}^{*}\setminus \{1\}`$ $`\forall k\in \mathbb{N}^{*}\backslash \{1\}`$
**$`\mathbf{M^k = \underbrace{M \times M \times \ddots \times M}_{\color{blue}{\text{k fois}}}}`$** **$`\mathbf{M^k = \underbrace{M \times M \times \ddots \times M}_{\color{blue}{\text{k fois}}}}`$**
##### $`M`$ est diagonale`$ ##### $`M`$ est diagonale`$
<br>
*$`\mathbf{M^2}`$* $`\; = M\times M`$ *$`\mathbf{M^2}`$* $`\; = M\times M`$
$`\quad = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\;\times\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}`$ $`= \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,\times\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}`$
*$`\mathbf{\quad = \begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2\\ \end{pmatrix}}`$* *$`\mathbf{\quad = \begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2\\ \end{pmatrix}}`$*
...@@ -93,11 +91,11 @@ $`= P\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m ...@@ -93,11 +91,11 @@ $`= P\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m
Et par récurrence : Et par récurrence :
$`\forall k \in \mathbb{N}^{*}\ \{1\}`$ $`\forall k \in \mathbb{N}^{*}\backslash \{1\}`$
**$`\mathbf{M^k}`$** $`\; = M^{k-1}\times M`$ **$`\mathbf{M^k}`$** $`\; = M^{k-1}\times M`$
$` = P\,\begin{pmatrix} \lambda_1^{k-1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^{k-1} \\ \end{pmatrix}\,\underbrace{P^{-1}\;\times\; P}_{\color{blue}{= I_m}}\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,P^{-1}`$ $` = P\,\begin{pmatrix} \lambda_1^{k-1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^{k-1} \\ \end{pmatrix}\,\underbrace{P^{-1}\,\times\, P}_{\color{blue}{= I_m}}\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,P^{-1}`$
**$`\mathbf{ = P\,\begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k\\ \end{pmatrix}}`$** **$`\mathbf{ = P\,\begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k\\ \end{pmatrix}}`$**
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment