Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
db92e501
Commit
db92e501
authored
Dec 11, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
b9207a59
Pipeline
#14814
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
12 additions
and
12 deletions
+12
-12
textbook.fr.md
...-interfaces/10.boundary-conditions/10.main/textbook.fr.md
+12
-12
No files found.
12.temporary_ins/96.electromagnetism-in-media/20.reflexion-refraction-at-interfaces/10.boundary-conditions/10.main/textbook.fr.md
View file @
db92e501
...
...
@@ -33,12 +33,12 @@ important to find some of the results later in this chapter. The
boundary conditions can be obtained from the Maxwell equations. The
first two equations
@@@@@@@@@@@@
@@@@@@@@@@@@
$
`\quad (equ. 3.4)`
$
will give information on the normal components of $
`\overrightarrow{D}`
$ and $
`\overrightarrow{B}`
$,
while the third and fourth
@@@@@@@@@@@@
@@@@@@@@@@@@
$
`\quad (equ. 3.5)`
$
will give information on the tangential components of $
`\overrightarrow{E}`
$ and $
`\overrightarrow{H}`
$.
...
...
@@ -64,7 +64,7 @@ figure [3.1] which extends from one side to the other on
the separation surface. This box has a base surface A and an
infinitesimally small thickness $`
\d
elta
`$. We get:
@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@
$`
\q
uad (equ. 3.6)
`$
If we now let $`
\d
elta
\l
ongrightarrow 0
`$ symmetrically with respect to the separation
surface such that the cylinder gets "pressed" onto the surface:
...
...
@@ -82,20 +82,20 @@ surface such that the cylinder gets "pressed" onto the surface:
We obtain:
@@@@@@@@
@@@@@@@@
$`
\q
uad (equ. 3.7)
`$
Now, considering that $`
d
\o
verrightarrow{a_2}=-d
\o
verrightarrow{a_1}
`$ we can write:
@@@@@@@@@@@@@
@@@@@@@@@@@@@
$`
\q
uad (equ. 3.8)
`$
Finally, as $`
S_1=S'
`$ and $`
d
\o
verrightarrow{a_2}=
\o
verrightarrow{n}_{2
\r
ightarrow 1}
\,
da_1
`$ we can
write:
@@@@@@@@@
@@@@@@@@@
$`
\q
uad (equ. 3.9)
`$
or
@@@@@@@@@@@
@@@@@@@@@@@
$`
\q
uad (equ. 3.10)
`$
The normal component of the vector $`
\o
verrightarrow{D}
`$ is in general discontinuous.
It is continuos only if there are no conduction charges at the
...
...
@@ -107,11 +107,11 @@ The situation is identical for the vector $`\overrightarrow{B}`$, the only diffe
being that the right hand side of the equation is always 0. We
conclude that:
@@@@@@@@@
@@@@@@@@@
$`
\q
uad (equ. 3.11)
`$
or
@@@@@@@@@
@@@@@@@@@
$`
\q
uad (equ. 3.12)
`$
The normal component of $`
\o
verrightarrow{B}
`$ is always conserved.
...
...
@@ -130,17 +130,17 @@ figure [3.2.]. We chose to integrate the line integral
following the right-hand sense relative to the surface normal
$`
\o
verrightarrow{n_a}
`$. By letting $`
\d
elta
\r
ightarrow 0
`$, we get
@@@@@@@@@@@
@@@@@@@@@@@
$`
\q
uad (equ. 3.13)
`$
as the line integral along the sides goes to zero and the flux of the
induction field $`
\o
verrightarrow{B}
`$, which is a finite quantity, approaches 0.
Considering that $`
\o
verrightarrow{CD}-
\o
verrightarrow{AB}=d
\v
ec{l}
`$, we get:
@@@@@@@@@@
@@@@@@@@@@
$`
\q
uad (equ. 3.14)
`$
or again
@@@@@@@@@@@@
@@@@@@@@@@@@
$`
\q
uad (equ. 3.15)
`$
i.e. the tangential components of the electric field are always
conserved at the interface. This condition can also be written:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment