Commit db92e501 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent b9207a59
Pipeline #14814 canceled with stage
......@@ -33,12 +33,12 @@ important to find some of the results later in this chapter. The
boundary conditions can be obtained from the Maxwell equations. The
first two equations
@@@@@@@@@@@@
@@@@@@@@@@@@ $`\quad (equ. 3.4)`$
will give information on the normal components of $`\overrightarrow{D}`$ and $`\overrightarrow{B}`$,
while the third and fourth
@@@@@@@@@@@@
@@@@@@@@@@@@ $`\quad (equ. 3.5)`$
will give information on the tangential components of $`\overrightarrow{E}`$ and $`\overrightarrow{H}`$.
......@@ -64,7 +64,7 @@ figure [3.1] which extends from one side to the other on
the separation surface. This box has a base surface A and an
infinitesimally small thickness $`\delta`$. We get:
@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@ $`\quad (equ. 3.6)`$
If we now let $`\delta\longrightarrow 0`$ symmetrically with respect to the separation
surface such that the cylinder gets "pressed" onto the surface:
......@@ -82,20 +82,20 @@ surface such that the cylinder gets "pressed" onto the surface:
We obtain:
@@@@@@@@
@@@@@@@@ $`\quad (equ. 3.7)`$
Now, considering that $`d\overrightarrow{a_2}=-d\overrightarrow{a_1}`$ we can write:
@@@@@@@@@@@@@
@@@@@@@@@@@@@ $`\quad (equ. 3.8)`$
Finally, as $`S_1=S'`$ and $`d\overrightarrow{a_2}=\overrightarrow{n}_{2\rightarrow 1}\,da_1`$ we can
write:
@@@@@@@@@
@@@@@@@@@ $`\quad (equ. 3.9)`$
or
@@@@@@@@@@@
@@@@@@@@@@@ $`\quad (equ. 3.10)`$
The normal component of the vector $`\overrightarrow{D}`$ is in general discontinuous.
It is continuos only if there are no conduction charges at the
......@@ -107,11 +107,11 @@ The situation is identical for the vector $`\overrightarrow{B}`$, the only diffe
being that the right hand side of the equation is always 0. We
conclude that:
@@@@@@@@@
@@@@@@@@@ $`\quad (equ. 3.11)`$
or
@@@@@@@@@
@@@@@@@@@ $`\quad (equ. 3.12)`$
The normal component of $`\overrightarrow{B}`$ is always conserved.
......@@ -130,17 +130,17 @@ figure [3.2.]. We chose to integrate the line integral
following the right-hand sense relative to the surface normal
$`\overrightarrow{n_a}`$. By letting $`\delta\rightarrow 0`$, we get
@@@@@@@@@@@
@@@@@@@@@@@ $`\quad (equ. 3.13)`$
as the line integral along the sides goes to zero and the flux of the
induction field $`\overrightarrow{B}`$, which is a finite quantity, approaches 0.
Considering that $`\overrightarrow{CD}-\overrightarrow{AB}=d\vec{l}`$, we get:
@@@@@@@@@@
@@@@@@@@@@ $`\quad (equ. 3.14)`$
or again
@@@@@@@@@@@@
@@@@@@@@@@@@ $`\quad (equ. 3.15)`$
i.e. the tangential components of the electric field are always
conserved at the interface. This condition can also be written:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment