Commit db92e501 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent b9207a59
Pipeline #14814 canceled with stage
...@@ -33,12 +33,12 @@ important to find some of the results later in this chapter. The ...@@ -33,12 +33,12 @@ important to find some of the results later in this chapter. The
boundary conditions can be obtained from the Maxwell equations. The boundary conditions can be obtained from the Maxwell equations. The
first two equations first two equations
@@@@@@@@@@@@ @@@@@@@@@@@@ $`\quad (equ. 3.4)`$
will give information on the normal components of $`\overrightarrow{D}`$ and $`\overrightarrow{B}`$, will give information on the normal components of $`\overrightarrow{D}`$ and $`\overrightarrow{B}`$,
while the third and fourth while the third and fourth
@@@@@@@@@@@@ @@@@@@@@@@@@ $`\quad (equ. 3.5)`$
will give information on the tangential components of $`\overrightarrow{E}`$ and $`\overrightarrow{H}`$. will give information on the tangential components of $`\overrightarrow{E}`$ and $`\overrightarrow{H}`$.
...@@ -64,7 +64,7 @@ figure [3.1] which extends from one side to the other on ...@@ -64,7 +64,7 @@ figure [3.1] which extends from one side to the other on
the separation surface. This box has a base surface A and an the separation surface. This box has a base surface A and an
infinitesimally small thickness $`\delta`$. We get: infinitesimally small thickness $`\delta`$. We get:
@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@ $`\quad (equ. 3.6)`$
If we now let $`\delta\longrightarrow 0`$ symmetrically with respect to the separation If we now let $`\delta\longrightarrow 0`$ symmetrically with respect to the separation
surface such that the cylinder gets "pressed" onto the surface: surface such that the cylinder gets "pressed" onto the surface:
...@@ -82,20 +82,20 @@ surface such that the cylinder gets "pressed" onto the surface: ...@@ -82,20 +82,20 @@ surface such that the cylinder gets "pressed" onto the surface:
We obtain: We obtain:
@@@@@@@@ @@@@@@@@ $`\quad (equ. 3.7)`$
Now, considering that $`d\overrightarrow{a_2}=-d\overrightarrow{a_1}`$ we can write: Now, considering that $`d\overrightarrow{a_2}=-d\overrightarrow{a_1}`$ we can write:
@@@@@@@@@@@@@ @@@@@@@@@@@@@ $`\quad (equ. 3.8)`$
Finally, as $`S_1=S'`$ and $`d\overrightarrow{a_2}=\overrightarrow{n}_{2\rightarrow 1}\,da_1`$ we can Finally, as $`S_1=S'`$ and $`d\overrightarrow{a_2}=\overrightarrow{n}_{2\rightarrow 1}\,da_1`$ we can
write: write:
@@@@@@@@@ @@@@@@@@@ $`\quad (equ. 3.9)`$
or or
@@@@@@@@@@@ @@@@@@@@@@@ $`\quad (equ. 3.10)`$
The normal component of the vector $`\overrightarrow{D}`$ is in general discontinuous. The normal component of the vector $`\overrightarrow{D}`$ is in general discontinuous.
It is continuos only if there are no conduction charges at the It is continuos only if there are no conduction charges at the
...@@ -107,11 +107,11 @@ The situation is identical for the vector $`\overrightarrow{B}`$, the only diffe ...@@ -107,11 +107,11 @@ The situation is identical for the vector $`\overrightarrow{B}`$, the only diffe
being that the right hand side of the equation is always 0. We being that the right hand side of the equation is always 0. We
conclude that: conclude that:
@@@@@@@@@ @@@@@@@@@ $`\quad (equ. 3.11)`$
or or
@@@@@@@@@ @@@@@@@@@ $`\quad (equ. 3.12)`$
The normal component of $`\overrightarrow{B}`$ is always conserved. The normal component of $`\overrightarrow{B}`$ is always conserved.
...@@ -130,17 +130,17 @@ figure [3.2.]. We chose to integrate the line integral ...@@ -130,17 +130,17 @@ figure [3.2.]. We chose to integrate the line integral
following the right-hand sense relative to the surface normal following the right-hand sense relative to the surface normal
$`\overrightarrow{n_a}`$. By letting $`\delta\rightarrow 0`$, we get $`\overrightarrow{n_a}`$. By letting $`\delta\rightarrow 0`$, we get
@@@@@@@@@@@ @@@@@@@@@@@ $`\quad (equ. 3.13)`$
as the line integral along the sides goes to zero and the flux of the as the line integral along the sides goes to zero and the flux of the
induction field $`\overrightarrow{B}`$, which is a finite quantity, approaches 0. induction field $`\overrightarrow{B}`$, which is a finite quantity, approaches 0.
Considering that $`\overrightarrow{CD}-\overrightarrow{AB}=d\vec{l}`$, we get: Considering that $`\overrightarrow{CD}-\overrightarrow{AB}=d\vec{l}`$, we get:
@@@@@@@@@@ @@@@@@@@@@ $`\quad (equ. 3.14)`$
or again or again
@@@@@@@@@@@@ @@@@@@@@@@@@ $`\quad (equ. 3.15)`$
i.e. the tangential components of the electric field are always i.e. the tangential components of the electric field are always
conserved at the interface. This condition can also be written: conserved at the interface. This condition can also be written:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment