Commit 685d3c1b authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 0035015d
Pipeline #14766 canceled with stage
......@@ -212,53 +212,21 @@ and
$`v_{\varphi}=\dfrac{\omega}{k_z}=\dfrac{c}{\sqrt{1-\frac{\omega_c^2}{\omega^2}}}`$
It is a dispersive medium.
![](dispersion-relation-for-a-mode_temp_L1200.jpg)
_Fig. 4.4: The geometric interpretation of the dispersion._
*π*2*n*2 (4.5)
>
*b*
>
*v* = = = *f* (*ω*) (4.6)
*ϕ kz*
j1 −
>
*[ω]{.underline}c*[2]{.underline} *ω*2
>
![](media/image219.png)
Figure 4.4: A dispersion relation for a mode.
it is a dispersive medium.
>
Similarly we obtain for the group velocity:
*v~g~*
chap5 Geometrical interpretation
= *[∂ω]{.underline}*
>
*∂k~z~*
2
= *c* 1 − *c*
>
(4.7)
![](media/image228.png)
$`v_{\varphi}=\drac{\partial \omega}{\partial k_z}=c\,\sqrt{1-\dfrac{\omega_c^2}{\omega^2}}`$
![](media/image230.png)
![](media/image231.png){width="2.0771489501312335in"
height="1.171874453193351in"}
__Geometrical interpretation__
Figure 4.5: The geometric interpretation of the dispersion.
![](geometrical-interpretation-of-the-dispersion_temp_L1200.jpg)
_Fig. 4.5: The geometric interpretation of the dispersion._
We can understand the propagating behaviour of the TE wave using a
We can understand the propagating behaviour of the $`TE`$ wave using a
simple interpretation:
- For *ω* = *ω~c~*, *k~z~* = *k* sin *θ* =0. This implies *θ* = 0. The
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment