Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
685d3c1b
Commit
685d3c1b
authored
Dec 11, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
0035015d
Pipeline
#14766
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
8 additions
and
40 deletions
+8
-40
textbook.fr.md
...-interfaces/20.metallic-waveguides/10.main/textbook.fr.md
+8
-40
No files found.
12.temporary_ins/96.electromagnetism-in-media/20.reflexion-refraction-at-interfaces/20.metallic-waveguides/10.main/textbook.fr.md
View file @
685d3c1b
...
@@ -212,53 +212,21 @@ and
...
@@ -212,53 +212,21 @@ and
$
`v_{\varphi}=\dfrac{\omega}{k_z}=\dfrac{c}{\sqrt{1-\frac{\omega_c^2}{\omega^2}}}`
$
$
`v_{\varphi}=\dfrac{\omega}{k_z}=\dfrac{c}{\sqrt{1-\frac{\omega_c^2}{\omega^2}}}`
$
It is a dispersive medium.

_Fig. 4.4: The geometric interpretation of the dispersion._
*π*
2
*n*
2 (4.5)
>
*b*
>
*v*
= = =
*f*
(
*ω*
) (4.6)
*ϕ kz*
j1 −
>
*[ω]{.underline}c*
[
2
]
{.underline}
*ω*
2
>

Figure 4.4: A dispersion relation for a mode.
it is a dispersive medium.
>
Similarly we obtain for the group velocity:
Similarly we obtain for the group velocity:
*v~g~*
$
`v_{\varphi}=\drac{\partial \omega}{\partial k_z}=c\,\sqrt{1-\dfrac{\omega_c^2}{\omega^2}}`
$
chap5 Geometrical interpretation
=
*[∂ω]{.underline}*
>
*∂k~z~*
2
=
*c*
1 −
*c*
>
(4.7)


__Geometrical interpretation__

{width="2.0771489501312335in"
height="1.171874453193351in"}
Figure 4.5: The geometric interpretation of the dispersion.

_Fig. 4.5: The geometric interpretation of the dispersion._
We can understand the propagating behaviour of the
TE
wave using a
We can understand the propagating behaviour of the
$
`TE`
$
wave using a
simple interpretation:
simple interpretation:
-
For
*ω*
=
*ω~c~*
,
*k~z~*
=
*k*
sin
*θ*
=0. This implies
*θ*
= 0. The
-
For
*ω*
=
*ω~c~*
,
*k~z~*
=
*k*
sin
*θ*
=0. This implies
*θ*
= 0. The
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment