Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
b5763a4b
Commit
b5763a4b
authored
Sep 07, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
2bed86c9
Pipeline
#13312
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
4 deletions
+4
-4
cheatsheet.fr.md
...ive-vector-fields-properties/20.overview/cheatsheet.fr.md
+4
-4
No files found.
12.temporary_ins/08.conservative-vector-fields/20.conservative-vector-fields-properties/20.overview/cheatsheet.fr.md
View file @
b5763a4b
...
...
@@ -105,11 +105,11 @@ CHAMP VECTORIEL CONSERVATIF<br>_" du champ vectoriel (conservatif) aux champs sc
*Définition d'un champ vectoriel conservatif*
En phy
i
sique, un champ de force est conservatif si son travail entre deux points quelconques ne dépend
pas du chemin suivi
entre ces deux points, mais seulement de la valeur du champ à ces deux points
.
En physique, un champ de force est conservatif si son travail entre deux points quelconques ne dépend
pas du chemin suivi.
Un champ vectoriel $
`\overrightarrow{X}`
$ qui s'identifie
au champ de
gradient d'un champ scalaire $
`\phi`
$ est conservatif :
au
gradient d'un champ scalaire $
`\phi`
$ est conservatif :
$
`\mathbf{\exists\,\phi(\vec{r}), \overrightarrow{X(\vec{r})}=\overrightarrow{grad}\,\big(\phi(\vec{r})\big)}`
$
...
...
@@ -124,7 +124,7 @@ CHAMP VECTORIEL CONSERVATIF<br>_" du champ vectoriel (conservatif) aux champs sc
& = \displaystyle\int_{M_1}^{M_2} d\phi\mathbf{\;\;=\phi(M_2)-\phi(M_1)}\\
\end{align}`
$
$
`\Longrightarrow`
$ La circulation d
'un tel
champ vectoriel le long d'un contour (chemin fermé) est nulle.
$
`\Longrightarrow`
$ La circulation d
e ce
champ vectoriel le long d'un contour (chemin fermé) est nulle.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment